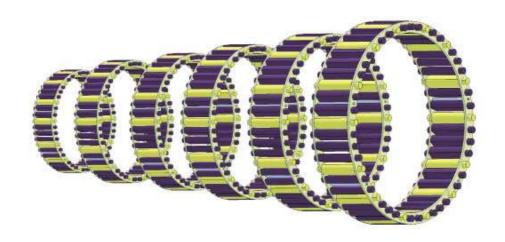

A ROBUST (ART) BACKSTOP SIBRE-SYZK ART BACKSTOP

SIBRE (Shenyang) Coupling and Backstop Co, LTD



Introduction to SIBRE-SYZK:

SIBRE and SYZK have joined forces to form a new worldwide company.

Founded in 1958, SIBRE Germany is a pioneer in the manufacture of industrial brakes. SYZK, established in 1992, is one of the earliest producers of backstops and couplings. Both are recognized leaders in their respective fields.

Together, SIBRE and SYZK combine German craftsmanship and precision with Chinese ingenuity. The global SIBRE-SYZK alliance provides quality products and outstanding service. With SIBRE-SYZK, you are sure to be safe.

SYZK

Advantages:

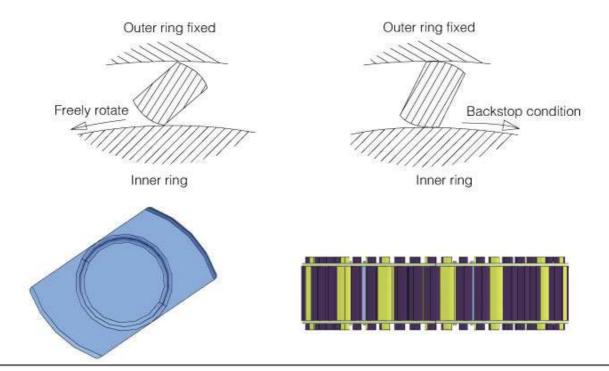
- 1. Over 50 years of German brake expertise combined with almost 20 years of Chinese backstop experience.
- Robust designs produced from modeling with CATIA (product lifecycle management software) and finite element analysis.
- 3. Precision testing and machining guarantees quality and consistency.
- Superior material selection, heat treatment and surface hardening technology ensure resistance to wear and long service life.
- 5. High quality sealants prevent leakage.
- 6. Lubricant options provide maintenance flexibility.
- The patented ARTC backstop with its unique cooling feature is designed to operate in high temperature environments.
- SIBRE Germany's quality control system used throughout the production process guarantees reliability and an extended lifecycle.
- SIBRE's global service network combined with a quality product ensures countless years of trouble-free operation.

SYZK

Applications:

SIBRE-SYZK ART backstops prevent reversal of inclined conveyors and vertical bucket elevators. Backstops are normally installed on low-speed drive shafts to prevent system reversal as a result of gravity.

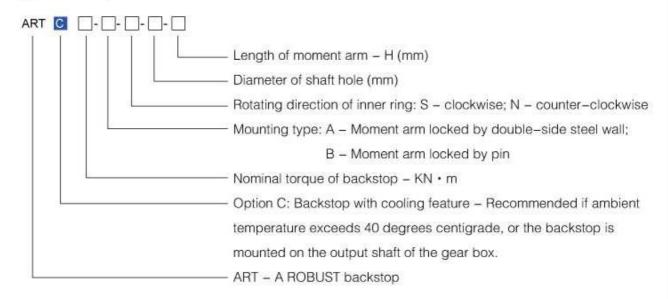
Backstops are used in:


- Belt conveyors
- Bucket elevators
- Scraper conveyors
- Wind turbines
- Rotary kilns
- Other equipment that requires backstop action

Backstops are widely used in belt conveyor systems found in:

- Coal mines
- Cement plants
- Iron mines
- Nonferrous metal mines
- Power plants
- Petrochemical plants
- Grain processing facilities
- Building industry

Working Principle:


Cams are arranged between an outer ring and inner ring. When the inner ring rotates in the intended direction, Cams move freely with the outer ring and inner ring. When the inner ring rotates in the opposite direction, Cams driven by spring force, wedge between the outer ring and inner ring to afford backstop torque.

SYZK

Type Description:

For instance:

ART 1000-A-S-500mm; ARTC 1000-A-S-500mm-2200mm ARTC - A ROBUST backstop with cooling feature

ART and ARTC Engineering Data:

Backstop size	Rated Torque KN·m	Max RPM r/min	Max Bore d mm	Runing Resistance N·m	Max. Weight Kg	
ART11	11	180	110	28	85	
ART16	16	130	135	30	90	
ART25	25	130	160	30	112	
ART38	38	130	200	40	182	
ART55	50	105	220	220 65		
ART95	95	100	250	90	650	
ART130	130	90	260	80	760	
ART200	200	90	300	300 100		
ART280	280	90	320	120	1450	
ART350	350	80	350	140	1930	
ART420	420	80	400	190	2564	
ART550	550	80	420	200	2960	
ART750	750	80	450	220	3530	
ART1000	1000	80	510	250	3900	
ART1300	1300	60	540	320	5230	
ART1800	1800	50	620	400	7010	

SYZK

ART Backstop Dimensions:

Backstop type	diemensions										
	А	В	С	D	E	F	н	h	L	ARTC	
										Lc	Dc
ART11	3	100	68	270	-	-	650	2	115	165	320
ART16	194	126	74	320	141	254	750	82 4 3	135	185	370
ART25		140	80	360	- 50		800	3355	150	200	410
ART38	22	160	88	430	928	(22)	850	55 <u>2</u> 8	160	210	480
ART55	9	200	102	500	100	2	1000	1000	240	290	560
ART95	-	250	120	600			1200	1676	290	340	660
ART130	40	280	120	650	120	60	1100	80	290	340	710
ART200	45	320	130	780	135	60	1300	80	290	340	850
ART280	50	360	140	850	150	70	1500	100	320	380	920
ART350	55	400	140	930	160	70	1600	100	360	420	1000
ART420	55	450	150	990	180	80	1700	120	380	440	106
ART550	60	450	150	1030	180	80	1800	120	450	510	1100
ART750	70	500	160	1090	210	100	2000	120	480	540	1170
ART1000	80	560	170	1100	230	110	2200	150	550	560	130
ART1300	80	630	180	1300	230	110	2400	150	500	560	140
ART1800	90	700	180	1450	250	120	2500	180	650	710	155

Type Selection:

For example: ART 1000-A-S-500mm-2200mm; ARTC 1000-A-S-500mm-2200mm

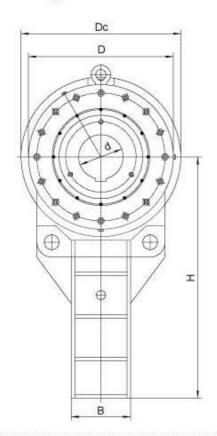
(ARTC - ART backstop with cooling feature)

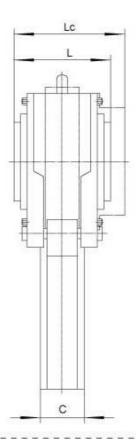
The ARTC backstop has two different dimensions compared to the ART backstop: Lc (maximum width) and Dc (maximum diameter)

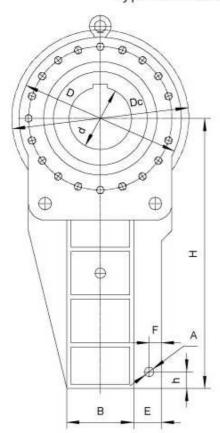
Type Selection Guide:

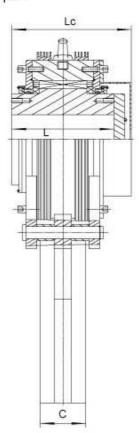
The type of backstop required is determined by nominal torque. Nominal backstop torque should be larger than the total required backstop torque.

Rotating shaft speed should be less than the maximum rotating speed of the inner ring.


The rotating direction of the inner ring is indicated by S - clockwise; N - counter-clockwise.

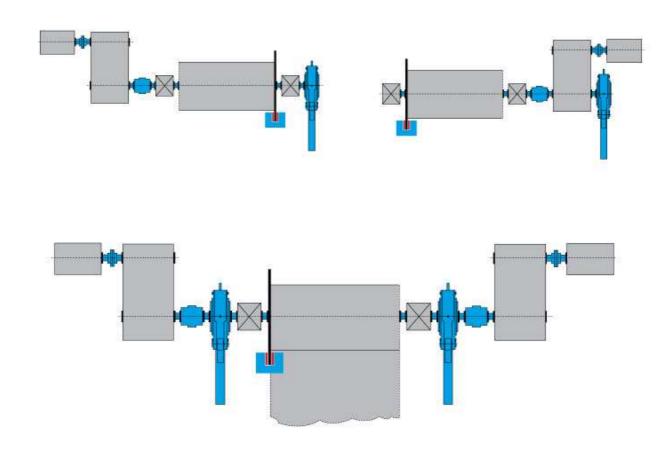

There are two types of moment arms: one is locked by a double-side steel wall; the other moment arm is locked by a pin.


SYZK


Type A: Moment arm locked by double side steel wall

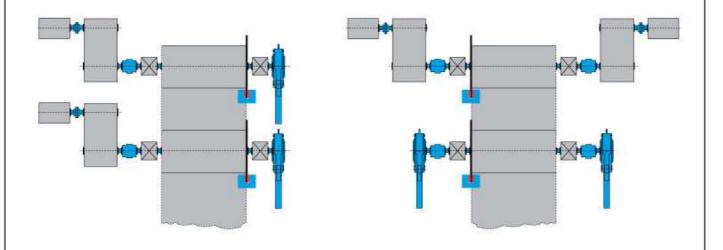
Type B: Moment arm locked by pin

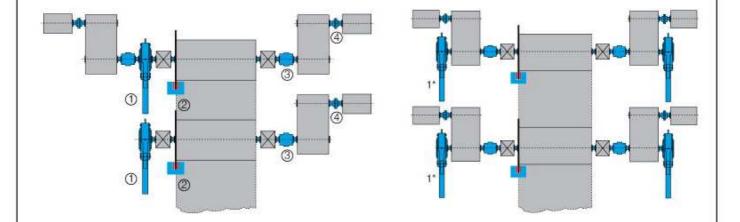
SYZK


Mounting Position:

SIBRE recommends the backstop be mounted on the low speed drive shaft. When needed, backstop torque will act on the low speed drive shaft and take effect immediately before system reversal occurs. This will protect the gearbox.

If possible, it is best to mount the backstop between the roller and the gearbox. This way there is no load on the drive system when backstopping occurs. In addition, mounting the backstop on the low speed drive shaft allows easy access to maintain the backstop and change the motor, gearbox and high-speed coupling, when required.


If the backstop is mounted on the double extension shaft, SIBRE recommends using the ARTC backstop with the unique cooling feature due to possible high temperature situations.


Several typical layouts of backstop in the belt conveyor system:

SYZK

SIBRE products are shown in blue.

Priority:

- 1. ART backstop, SIBRE recommends using ARTC backstop with the unique cooling feature.
- 2. SHI emergency brake
- SIBRE recommends a low speed coupling such as ARC chain coupling, A-FLEX articulating multi-misalignment coupling or AGC crown gear coupling.
- SIBRE recommends a high speed coupling such as AFC elastic spider coupling, APC elastic pin coupling or AGC crown gear coupling.

SIBRE also offers SHI, USB, TEXU and TE brakes used on the high speed shaft of belt conveyor systems.

SYZK

Calculation for Type Selection:

1. Selection acc. driving power:

O Formula for selection acc. driving power

$$T_N \ge T_C = \frac{P \times 9550 \times f}{r}$$

T_N = Nominal torque of backstop

Tc= Calculating torque (maximum backstop torque produced by backstop)

P= Motor rated power(Kw)

f = Working factor or safety factor > 1.5 - 4

r = Rotating speed of shaft mounted with backstop (r/min)

Working factor or safety factor is determined by maximum stalling torque, angle of slope of the conveyor, quantity of backstops in the system and layout of backstops.

2. Selection acc. carrying capacity of conveyor:

Formula for selection acc. carrying capacity of conveyor

$$T_N \ge T_C = \frac{9.8Q \times L \times D \times K}{3.6 \times V \times 2} \times f$$

TN = Nominal torque of backstop

Tc= Calculating torque (maximum backstop torque produced by backstop)

Q = Carrying capacity of conveyor (ton/hr)

L = Slope length (m)

D = Roller diameter (m)

V = Belt speed (m/s)

K = Slope factor

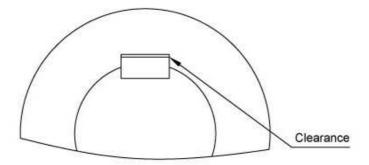
Slope K	5°	8°	10°	12°	14°	16°	18°	20°	25°	30°
Factor	0.0872	0.1392	0.1736	0.2079	0.2419	0.2756	0.309	0.342	0.4226	0.5

f = Working factor or safety factor > 1.5 - 4

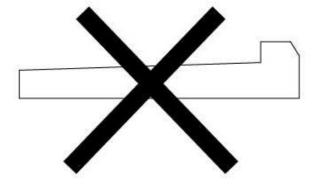
Working factor or safety factor is determined by maximum stalling torque, angle of slope of the conveyor, quantity of backstops in the system and layout of the backstops.

3. Additional information:

For more detailed calculations and other technical information, please contact SIBRE-SYZK.


SYZK

Selection of Shaft:


The shaft must be strong enough to withstand maximum backstop load. SIBRE customarily supplies acc. fitting tolerance of shaft hole and shaft to F7/h7 (ISO 286).

Selection of Key and Key Way:

It is important the key properly fits into the key way. There must be clearance between the surface of the key and the inner ring of the backstop. See illustration below.

Attention: A gib headed key cannot be used to connect the shaft and shaft hole. Doing this will deform the backstop inner ring and could cause the backstop to fail.

For detailed calculations, please contact SIBRE-SYZK.

SYZK

Design of Moment Arm Lock:

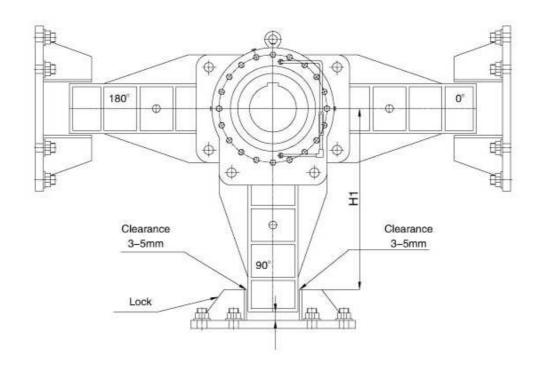
The moment arm must be locked. This lock must be strong enough to withstand the shearing moment transmitted by the moment arm of the backstop. The shearing moment will be different depending on the length of the moment arm. The calculation to determine the lock is shown below.

$$F = \frac{1.5 \times T_N}{H1}$$

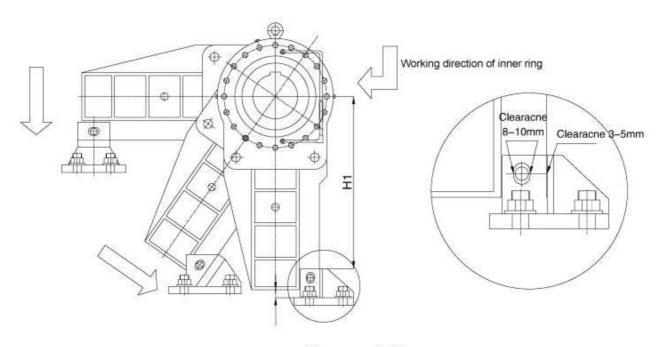
F= Shearing force on lock - N

T_N= Nominal torque of backstop - Nm

H1= Distance between pressure point and center of inner ring - m


Attention:

- 1. There must be clearance between the moment arm and the lock.
- SIBRE recommends protecting the moment arm and lock with a dust cover. A dust cover will prevent the accumulation of dirt and other foreign materials and ensure normal operation of the moment arm.
- 3. When the moment arm is locked by a pin, the pin opening on the lock should be an increasing circular bore. The direction of the increasing circular bore should be the same as the moment arm which will prevent the outer ring of the backstop from rotating. The diameter of the pin should be 8mm to 10mm less than the diameter of the pin opening. The pin will not be used during backstop activation. It only will function to prevent a reversal when the backstop is running in the intended direction.


Several layouts of lock(see right photos)

SYZK

Clearance: 8-12m

Clearance: 8-12m

SYZK

Installation and Maintenance Instructions:

Notice:

- Check all parts in shipment against the packing list.
- Ensure the rotating direction of the shaft is the same as the working direction of the inner ring of the backstop to prevent a serious accident.
- 3. Use a hoist to position the backstop when installing it.
- Moment arm cannot be connected to the lock. (For example, the moment arm cannot be welded together with the lock.)
- The drive shaft should be recessed 2mm to 3mm into the inner ring of the backstop. A shoulder ring can be used to fasten the backstop to the drive shaft.
- 6. The lock, shoulder ring, bolts and washers can be ordered along with the backstop.

Installation Steps:

- Clean and de-burr the drive shaft extension. Ensure the backstop inner ring is clean.
- 2. Lubricate the drive shaft extension.
- 3. Hoist the backstop into position and drive the inner ring onto the drive shaft extension. Fasten the back stop in place with the shoulder ring. Note: Use only a mallet with a plastic head to drive the inner ring onto the drive shaft. Do not heat the inner ring to expand it during the installation process.
- 4. Rotate the moment arm to the installation angle and lock it in place.
- If the backstop is lubricated with oil, mount the oil level indicator and filter after installation. The oil level indicator should be mounted vertically and the filter should be mounted on top of the backstop.

SYZK

Maintenance:

- Backstops using grease for lubrication will be filled before delivery. If there is more than 6 months between
 production and installation, the grease will need to be topped off. Grease volume is 1/5 to 1/3 of total volume,
 not to exceed 1/2 of total volume. Do not use grease containing dangerous compounds such as lead,
 molybdenum disulfide, etc.
- Backstops using oil will be filled prior to delivery. If there is more than 6 months between production and installation, the oil will need to be refilled using ATF- automatic transmission fluid. SIBRE recommends DEXRON, DEXRON-II, DEXRON-III or ATF-F.
- 3. Check the backstop if there is excessive noise or an abnormal temperature rise during operation.
- 4. Periodically check the bolts on the lock to ensure they are not loose.
- 5. The backstop operational temperature range is −40°C to 50°C. A cooling device is required for operating temperatures above 40°C. A sunshade should be installed for outdoor applications. For operations at temperatures in excess of 50°C, check the lubrication daily. Cease operating the backstop at temperatures in excess of 85°C. If the backstop is mounted on the gear box shaft extension, periodically check the gear box during high temperature operations.
- Exposing the backstop to chlorine, carbon tetrachloride, potash, etc. will shorten the life of the backstop ring seal.

SIBRE GERMANY Siegerland Bremsen Emde GmbH& Co. Auf der Stucke 1-5, D-35708 Haiger

SIBRE CHINA SIBRE BRAKES (Tianjin) CO.LTD. No. 8, Haitong Street, TEDA, Tianjin, 300457, P.R. China

SIBRE (Shenyang) Coupling and Backstop Co, LTD No. 23, Zuxing Lu, Hunhe Economic Develop Zone, Shenyang

SIBRE INDIA SIBRE BRAKES (India) Pvt. Ltd "Sukh Sagar" 7th Floor, 7-A Kolkata 700 020 INDIA

SIBRE AMERICA 2800 Pinehurst Circle Ames, Iowa 50010, USA

SIBRE ESPANA C / Esperanto 8 11 B Malaga, Spain Mr. Thilo Pfister

Tel: 0049 2773 94 00 0 Fax: 0049 2773 94 00 10 E-mail: info@sibre.de

Miss.Tang Lili Tel: 0086-22-5981 3100 Fax: 0086-22-5981 3101 E-mail: info@sibre.cn

Miss.Cui Li Tel: 0086-24-23704427 Fax: 0086-24-23704427-816 E-mail: info@sibre.cn

Mr. Sudipto Gangopadhay Tel: 0091 33 2454 3280 Fax: 0091 33 2454 3269 E-mail: sganguly@sibre.in

Mr. Lee Bauer Cell phone: +001-515-441-1231 E-mail: lee_bauer@yahoo.com

Mr. Toscano
Tel: 0034 952 978382
Fax: 0034 952 978386
E-mail: javier.toscano@ari.es

